
Analiza și Modelarea Sistemelor Software - Lab 11

Traian Șerbănuță

2025

1Thanking Andrian Babii @ Endava for slide content



Agenda

▶ Get to know
▶ Laboratory structure
▶ General Presentation



Introduction

Subject: Software System Modeling

▶ UML Diagrams, Modeling, Design Patterns, etc.

Requirements:

▶ To be active
▶ Attendance is not mandatory
▶ Evaluation based on team project



Who we are

About me:

▶ Traian Șerbănuță
▶ associate professor @ UNIBUC
▶ research consultant @ Pi Squared Inc.
▶ I like programming languages. I was paid for using the following

▶ regular: Java, C++, Python, Rust, Haskell
▶ esoteric: The K Framework, Rocq, Circom

About you:

▶ Name
▶ Professional interests
▶ Fun fact

https://cs.unibuc.ro/~tserbanuta
https://pi2.network/
https://kframework.org
https://rocq-prover.org
https://docs.circom.io


Tools

▶ PlantUML (also available as VSCode extension)
▶ Mermaid (works well with Github)
▶ Lucidchart
▶ Web Sequence Diagrams
▶ yUML
▶ Diagrams.net

https://editor.plantuml.com/
https://mermaid-js.github.io/
https://www.lucidchart.com/
https://www.websequencediagrams.com/
https://yuml.me/
https://app.diagrams.net/


UML

▶ UML is not a process of designing solutions
▶ It is a way of communicating designs independent of

programming languages
▶ UML 2 has many diagram types, divided into:

▶ Structural diagrams
▶ Behavior diagrams (including interaction aspects)



Figure 1: Types of diagrams in UML



Poll

What type of diagram is
presented?

▶ Class
▶ Package
▶ Interaction
▶ Use case

Figure 2: ????



Answer: Class diagram

▶ Backbone of object-oriented modeling
▶ Shows how different entities relate to each other (static

structure)
▶ Purposes:

▶ Analysis and design of static view of an application
▶ Describe responsibilities of a system
▶ Base for component and deployment diagrams
▶ Forward and reverse engineering



Poll

What type of diagram is
presented?

▶ State machine
▶ Interaction
▶ Component
▶ Use case

Figure 3: ????



Answer: Component diagram

▶ Focuses on system’s components
▶ Models static implementation view
▶ Breaks down system into high-level functionalities
▶ Each component has a clear aim and interacts minimally with

others



Exercise: Parking Lot Design

Goal: Design a parking lot using class diagrams.

Steps:

1. Gather product requirements (make reasonable assumptions).
2. Eliminate confusion and clarify.
3. Draw class hierarchy diagram.
4. Ignore scalability/performance issues.



Parking Lot Requirements

▶ Multiple floors for parking cars
▶ Multiple entry and exit points
▶ Payment options:

▶ Automated exit panel
▶ Parking attendant
▶ Info portal on each floor (cash & credit cards)

▶ If paid at info portal → no need to pay at exit
▶ System should enforce max capacity
▶ If full → show message at entrance + display board on ground

floor
▶ Multiple parking spot types: Compact, Large, Handicapped,

Motorcycle, etc.
▶ Electric car spots with charging + payment panel
▶ Support multiple vehicle types: car, truck, van, motorcycle, etc.


