
AMSS Lecture 11: Design Patterns (II)

Traian-Florin Șerbănuță

2025

Agenda

1. Recall
1.1 What are Design Patterns?
1.2 Classification of Patterns

2. Patterns
2.1 Visitor
2.2 Mediator
2.3 Bridge
2.4 Adapter
2.5 Decorator
2.6 Proxy
2.7 Composite

3. Wrap-up

What Are Design Patterns?

Definition
Reusable solutions to common software design problems.

Origin
Popularized by the “Gang of Four” (Gamma, Helm, Johnson,
Vlissides, 1994).

Purpose
▶ Provide shared vocabulary
▶ Improve code maintainability
▶ Promote reusability and clarity

Example
Instead of reinventing how to traverse a collection, we apply the
Iterator pattern.

Pattern Classification

Design patterns are typically grouped into three main categories:

Category Description Example Patterns

Creational How objects are created Builder, Factory,
Singleton

Structural How classes and objects
are composed

Adapter, Bridge,
Composite, Decorator,
Proxy

Behavioral How objects interact and
communicate

Visitor, Mediator, State

Visitor Pattern

Type
Behavioral pattern

Intent
▶ Separate an algorithm from the object structure it operates on

▶ Allow new operations without modifying existing classes.

Problem Solved
▶ How to add new operations to a set of related classes?

▶ without changing their source code?

Solution
▶ Define a Visitor interface with visit methods for each element

type.
▶ Elements accept a visitor and delegate the operation to it.

Visitor Pattern - key ideas
Elements Objects you want to operate on (e.g., nodes in an

AST, shapes in a graphics editor).

Each element implements an accept(visitor) method.

Visitor An object that implements different operations for
each concrete element type.

Example methods: visitCircle(circle),
visitSquare(square),
visitTriangle(triangle)

Double Dispatch A crucial mechanism:

The element calls visitor.visitXYZ(this)

The visitor chooses the correct method based on the
element type

This avoids type-checking or if/instanceof cascades.

Visitor Pattern — concrete example scenario

Problem
▶ You maintain a graphics library containing shapes like Circle

and Rectangle.
▶ You frequently need to add new operations—such as area

calculation, exporting, rendering—
▶ but you want to avoid modifying the existing shape classes

every time.

Solution
The Visitor pattern lets you add new operations by creating new
Visitor classes, while the shapes themselves remain unchanged and
simply “accept” visitors.

Visitor Pattern — concrete example scenario

Problem
▶ You maintain a graphics library containing shapes like Circle

and Rectangle.
▶ You frequently need to add new operations—such as area

calculation, exporting, rendering—
▶ but you want to avoid modifying the existing shape classes

every time.

Solution
The Visitor pattern lets you add new operations by creating new
Visitor classes, while the shapes themselves remain unchanged and
simply “accept” visitors.

Visitor Pattern — UML class diagram

Visitor

visit(c : Circle)
visit(r : Rectangle)

Element

accept(v : Visitor)

Circle Rectangle

«call»

«call» «call»

Visitor Pattern — concrete example code
Source file

// Element
interface Shape {

void accept(Visitor v);
}

// Concrete Elements
class Circle implements Shape {

double radius = 5;
public void accept(Visitor v) { v.visit(this); }

}

class Rectangle implements Shape {
double width = 4, height = 3;
public void accept(Visitor v) { v.visit(this); }

}

// Visitor
interface Visitor {

void visit(Circle c);
void visit(Rectangle r);

}

// Concrete Visitor
class AreaCalculator implements Visitor {

public void visit(Circle c) {
System.out.println("Circle area = " + Math.PI * c.radius * c.radius);

}
public void visit(Rectangle r) {

System.out.println("Rectangle area = " + r.width * r.height);
}

}

// Usage
public class Main {

public static void main(String[] args) {
Shape[] shapes = { new Circle(), new Rectangle() };
Visitor areaVisitor = new AreaCalculator();

for (Shape s : shapes) s.accept(areaVisitor);
}

}

https://github.com/traiansf/traiansf.github.io/blob/main/class/amss2025/curs/code/VisitorPatternDemo.java

Visitor Pattern - benefits and drawbacks

Benefits
▶ Easy to add new operations

▶ Add a new visitor class, no changes to element classes
▶ Keeps element classes small

▶ Offloads complex logic
▶ Great for tree-like structures

▶ Compilers, interpreters, document processors, etc

Drawbacks
▶ Hard to add new element types

▶ Every visitor must be updated
▶ Increased coupling

▶ Visitors need access to element internals
▶ More boilerplate

▶ Especially in statically typed languages

Visitor Pattern Exercise

Task
▶ Design a system for processing elements in an online editor:

▶ Paragraph;
▶ Image;
▶ Table.

▶ Define two possible operations:
▶ spell-checking;
▶ exporting to HTML.

▶ How would the Visitor pattern let you add these operations?
▶ without modifying the element classes

Mediator Pattern

Type
Behavioral pattern

Intent
▶ Define an object encapsulating how a set of objects interact

▶ promoting loose coupling

Problem Solved
How to reduce direct dependencies and complex communication
between many interacting objects?

Solution
▶ Create a Mediator object that centralizes communication

logic.
▶ Colleagues communicate only through the mediator.

Mediator Pattern — key concepts

Mediator (Interface / Abstract Class) Defines how components
communicate through the mediator.

Concrete Mediator Implements coordination logic.

Receives events from components and decides how to
react.

Colleague Components Objects that interact only through the
mediator.

They notify the mediator when something happens
instead of contacting each other directly.

Mediator Pattern — concrete example scenario

Problem
▶ In a chat application, every user needs to send messages to

others.
▶ If each user communicated directly with every other user, the

system would become highly coupled and difficult to maintain.

Solution
▶ The Mediator pattern introduces a central ChatRoom that

manages all communication.
▶ Users send messages through the mediator, drastically

simplifying interaction.

Mediator Pattern — concrete example scenario

Problem
▶ In a chat application, every user needs to send messages to

others.
▶ If each user communicated directly with every other user, the

system would become highly coupled and difficult to maintain.

Solution
▶ The Mediator pattern introduces a central ChatRoom that

manages all communication.
▶ Users send messages through the mediator, drastically

simplifying interaction.

Mediator Pattern — UML class diagram

Mediator

sendMessage(msg, from: Colleague)

Colleague

send(msg)

ConcreteMediator

User

Mediator Pattern — concrete example code
Source file

// Mediator
interface ChatMediator {

void sendMessage(String msg, User user);
}

// Concrete Mediator
class ChatRoom implements ChatMediator {

public void sendMessage(String msg, User user) {
System.out.println(user.getName() + ": " + msg);

}
}

// Colleague
abstract class User {

protected ChatMediator mediator;
protected String name;
User(String name, ChatMediator mediator) {

this.name = name; this.mediator = mediator;
}
String getName() { return name; }
void send(String msg) { mediator.sendMessage(msg, this); }

}

// Concrete Colleague
class ChatUser extends User {

ChatUser(String name, ChatMediator mediator) { super(name, mediator); }
}

// Usage
public class Main {

public static void main(String[] args) {
ChatMediator room = new ChatRoom();
User alice = new ChatUser("Alice", room);
alice.send("Hello everyone!");

}
}

https://github.com/traiansf/traiansf.github.io/blob/main/class/amss2025/curs/code/MediatorPatternDemo.java

Mediator Pattern — Benefits & Tradeoffs

Benefits
▶ Loose coupling

▶ Components don’t depend on each other’s implementation.
▶ Centralized control

▶ Collaboration logic is in one place.
▶ Easier maintenance

▶ Changes affect fewer places.

Drawbacks
▶ Mediator can become too large (“God Object”)

▶ If it takes on too much logic, the pattern backfires.
▶ May hide complexity instead of removing it.

Mediator Pattern Exercise

Task
▶ Imagine a smart home system where devices (lights, thermostat,

alarm, blinds) must coordinate actions (e.g., “away mode”).
▶ Design a Mediator that centralizes communication so devices

do not directly reference or call each other.
▶ Outline the mediator role and how devices interact with it.

Bridge Pattern

Type
Structural pattern

Intent
▶ Decouple an abstraction from its implementation

▶ so that the two can vary independently.

Problem Solved
How to avoid a class explosion caused by combining multiple
abstractions with multiple implementations?

Solution
▶ Split abstraction and implementation into separate class

hierarchies
▶ connecting them via a bridge interface.

Bridge Pattern — key components

Abstraction Defines high-level control logic.

Maintains a reference to an implementation.

Refined Abstraction Specialized abstractions that extend the base
abstraction.

Implementor (Interface or Abstract Class) Defines low-level
platform-specific operations.

Concrete Implementor Actual implementation details.

Bridge Pattern — concrete example scenario

Problem
▶ You want to build a universal remote-control system that works

with different devices like TVs, Radios, and projectors.
▶ If you directly subclass for every combination (e.g.,

AdvancedTVRemote, BasicRadioRemote), you get class
explosion.

Solution
▶ The Bridge pattern separates the abstraction (Remote) from

the implementation (Device), allowing each to evolve
independently and avoiding unnecessary subclasses.

Bridge Pattern — concrete example scenario

Problem
▶ You want to build a universal remote-control system that works

with different devices like TVs, Radios, and projectors.
▶ If you directly subclass for every combination (e.g.,

AdvancedTVRemote, BasicRadioRemote), you get class
explosion.

Solution
▶ The Bridge pattern separates the abstraction (Remote) from

the implementation (Device), allowing each to evolve
independently and avoiding unnecessary subclasses.

Bridge Pattern — concrete example diagram

Device

turnOn()
turnOff()

Remote

toggle()

TV Radio

SimpleRemote AdvancedRemote

Bridge Pattern — concrete example code
Source file

// Implementor
interface Device {

void turnOn();
void turnOff();

}

// Concrete Implementors
class TV implements Device {

public void turnOn() { System.out.println("TV ON"); }
public void turnOff() { System.out.println("TV OFF"); }

}

// Abstraction
abstract class Remote {

protected Device device;
Remote(Device d) { this.device = d; }
abstract void toggle();

}

// Refined Abstraction
class SimpleRemote extends Remote {

private boolean on = false;
SimpleRemote(Device d) { super(d); }

void toggle() {
if (on) device.turnOff();
else device.turnOn();
on = !on;

}
}

// Usage
public class Main {

public static void main(String[] args) {
Remote remote = new SimpleRemote(new TV());
remote.toggle();
remote.toggle();

}
}

https://github.com/traiansf/traiansf.github.io/blob/main/class/amss2025/curs/code/BridgePatternDemo.java

Bridge Pattern — benefits and drawbacks

 Benefits
▶ Decouples abstraction from implementation

▶ They evolve independently
▶ Avoids class explosion

▶ You don’t need a subclass for every combination
▶ Improves extensibility

▶ Add new abstractions or new implementations
without touching the other side

▶ Follows the Open/Closed Principle
▶ Add features without modifying existing code

Drawbacks
▶ Architecture more complex than necessary for simple cases.
▶ Adds layers of indirection you may not always need.

Bridge Pattern Exercise

Task
You are building a drawing tool with two dimensions of variability:

▶ Shapes (Circle, Rectangle, Line);
▶ Rendering Methods (OpenGL, SVG).

Explain how to apply the Bridge pattern so all shapes can be
rendered with any rendering method without class explosion.

Goal
Identify separate dimensions of change and design a usable
abstraction/ implementation split.

Adapter Pattern

Type
Structural pattern

Intent
Convert the interface of one class into another interface clients
expect.

Problem Solved
How to make incompatible interfaces work together without
changing existing code?

Solution
Create an Adapter that wraps an existing class and exposes the
desired target interface.

Adapter Pattern — key components

Target The interface your code expects and uses.

Adaptee The existing class with an incompatible interface.

Adapter The wrapper that Implements the Target interface

Internally calls the Adaptee method(s), translating
data or behavior

Adapter Pattern — concrete example scenario

Problem
▶ Your app expects a MediaPlayer interface with a play()

method,
▶ but your LegacyPlayer only supports playMp3().

▶ You cannot modify the legacy system
▶ but you must integrate it

Solution
The Adapter pattern wraps the incompatible class and exposes the
interface the client expects, allowing the two systems to work
together seamlessly.

Adapter Pattern — concrete example scenario

Problem
▶ Your app expects a MediaPlayer interface with a play()

method,
▶ but your LegacyPlayer only supports playMp3().

▶ You cannot modify the legacy system
▶ but you must integrate it

Solution
The Adapter pattern wraps the incompatible class and exposes the
interface the client expects, allowing the two systems to work
together seamlessly.

Adapter Pattern — UML class diagram

MediaPlayer

play(file)

LegacyPlayer

playMp3(file)

MediaAdapter

Adapter Pattern — concrete example code
Source file

// Target interface
interface MediaPlayer {

void play(String file);
}

// Adaptee
class LegacyPlayer {

void playMp3(String filename) {
System.out.println("Playing MP3: " + filename);

}
}

// Adapter
class MediaAdapter implements MediaPlayer {

private LegacyPlayer legacy = new LegacyPlayer();
public void play(String file) { legacy.playMp3(file); }

}

// Usage
public class Main {

public static void main(String[] args) {
MediaPlayer player = new MediaAdapter();
player.play("song.mp3");

}
}

https://github.com/traiansf/traiansf.github.io/blob/main/class/amss2025/curs/code/AdapterPatternDemo.java

Adapter Pattern — benefits and drawbacks

Benefits
▶ Reuses existing code without modification
▶ Decouples client code from concrete implementations
▶ Makes third-party, legacy, or low-level APIs easier to use
▶ Improves testability by exposing a clean interface

Drawbacks
▶ Adds an extra layer of indirection
▶ Can proliferate adapters if many mismatched types exist
▶ If misused, may hide architectural inconsistencies

Adapter Pattern Exercise

Task
▶ A new external weather service provides data in a completely

different format from your current WeatherData interface.
▶ Design an Adapter that lets your system continue using

WeatherData
▶ while seamlessly integrating the new provider.

Decorator Pattern

Type
Structural pattern

Intent
Attach additional responsibilities to an object dynamically without
modifying its class.

Problem Solved
How to add flexible, combinable features to objects without subclass
explosion?

Solution
Wrap objects with decorator classes that implement the same
interface and add behavior before/after delegating calls.

Decorator Pattern — key components

Component (interface or abstract class) Defines the main
operations.

Concrete Component The core object you want to decorate.

Decorator (abstract class) Wraps a component and delegates calls
to it.

Concrete Decorators Add additional behavior before or after
delegating to the wrapped object.

Decorator Pattern — concrete example scenario

Problem
▶ A beverage ordering system needs to allow customers to add

ingredients
▶ like milk, sugar, or whipped cream to drinks.

▶ Creating a subclass for every combination
(CoffeeWithMilkAndSugar, etc.) would cause a combinational
explosion.

Solution
▶ The Decorator pattern lets you dynamically wrap beverages

with add-ons,
▶ mixing and matching features without modifying existing code.

Decorator Pattern — concrete example scenario

Problem
▶ A beverage ordering system needs to allow customers to add

ingredients
▶ like milk, sugar, or whipped cream to drinks.

▶ Creating a subclass for every combination
(CoffeeWithMilkAndSugar, etc.) would cause a combinational
explosion.

Solution
▶ The Decorator pattern lets you dynamically wrap beverages

with add-ons,
▶ mixing and matching features without modifying existing code.

Decorator Pattern — UML class diagram

Beverage

getDescription()
cost()

Coffee AddOn

Milk Sugar WhippedCream

Decorator Pattern — concrete example code
Source file

// Component
interface Beverage {

String getDescription();
double cost();

}

// Concrete Component
class Coffee implements Beverage {

public String getDescription() { return "Coffee"; }
public double cost() { return 2.0; }

}

// Decorator
abstract class AddOn implements Beverage {

protected Beverage beverage;
AddOn(Beverage b) { beverage = b; }

}

// Concrete Decorators
class Milk extends AddOn {

Milk(Beverage b) { super(b); }
public String getDescription() { return beverage.getDescription() + ", Milk"; }
public double cost() { return beverage.cost() + 0.5; }

}

// Usage
public class Main {

public static void main(String[] args) {
Beverage coffee = new Milk(new Coffee());
System.out.println(coffee.getDescription() + " = $" + coffee.cost());

}
}

https://github.com/traiansf/traiansf.github.io/blob/main/class/amss2025/curs/code/DecoratorPatternDemo.java

Decorator Pattern — benefits and drawbacks

Benefits
▶ Add responsibilities at runtime
▶ Combine decorators in flexible ways
▶ Open/Closed Principle

▶ add behavior without modifying existing code
▶ Avoids deep subclass hierarchies

Drawbacks
▶ Lots of small classes
▶ Behavior can become harder to trace after many layers
▶ Debugging can be trickier

Decorator Pattern Exercise

Task
▶ Consider an online text editor where users can apply features

such as:
▶ Bold, Italic, Underline, Syntax Highlighting.

▶ Describe how you could use Decorators to apply multiple text
styles to a plain Text object at runtime

▶ without creating many subclasses.

Proxy Pattern

Type
Structural pattern

Intent
Provide a surrogate or placeholder for another object to control
access to it.

Problem Solved
How to manage access to a resource-heavy or remote object (e.g.,
lazy loading, caching, security)?

Solution
Implement a proxy that implements the same interface as the real
subject and controls access before forwarding requests.

Proxy Pattern - key components

Subject (interface) Defines the operations available to both Proxy
and RealSubject.

RealSubject The actual object that does the real work.

Proxy Implements the same interface but performs extra
steps before/after delegating to RealSubject: Access
control, Lazy initialization, Logging / auditing,
Remote communication, Caching

Clients cannot tell whether they’re talking to the
proxy or the real subject.

Proxy Pattern — concrete example scenario

Problem
▶ Accessing a real database connection is slow and expensive.
▶ However, you only need the actual connection when a query is

executed.

Solution
▶ The Proxy pattern allows you to create a DatabaseProxy that

▶ delays the creation of the RealDatabase until it’s truly needed
(lazy loading),

▶ controlling access and improving performance.

Proxy Pattern — concrete example scenario

Problem
▶ Accessing a real database connection is slow and expensive.
▶ However, you only need the actual connection when a query is

executed.

Solution
▶ The Proxy pattern allows you to create a DatabaseProxy that

▶ delays the creation of the RealDatabase until it’s truly needed
(lazy loading),

▶ controlling access and improving performance.

Proxy Pattern — UML class diagram

Database

query(sql)

RealDatabase

DatabaseProxy

Proxy Pattern — concrete example code
Source file

// Subject
interface Database {

void query(String sql);
}

// Real Subject
class RealDatabase implements Database {

public RealDatabase() {
System.out.println("Connecting to database...");

}
public void query(String sql) {

System.out.println("Executing query: " + sql);
}

}

// Proxy
class DatabaseProxy implements Database {

private RealDatabase db;

public void query(String sql) {
if (db == null) db = new RealDatabase(); // lazy initialization
db.query(sql);

}
}

// Usage
public class Main {

public static void main(String[] args) {
Database db = new DatabaseProxy();
db.query("SELECT * FROM users");

}
}

https://github.com/traiansf/traiansf.github.io/blob/main/class/amss2025/curs/code/ProxyPatternDemo.java

Proxy Pattern — benefits and drawbacks

Benefits
▶ Add functionality without changing the real object
▶ Control expensive or sensitive operations
▶ Transparent to clients—same interface
▶ Can optimize performance (caching, lazy loading)
▶ Supports distributed systems (remote proxy)

Drawbacks
▶ Adds complexity
▶ Indirection may hurt performance if misused
▶ Can hide what’s really happening (e.g., network calls look local)

Proxy Pattern Exercise

Task
▶ Your application accesses remote image files stored on a cloud

server.
▶ Design a Proxy that loads the actual image only when it is

displayed
(for example, when scrolling in a gallery).

▶ Describe the responsibilities of both the proxy and the real
image.

Goal
Identify opportunities for lazy loading, access control, and
indirection.

Composite Pattern

Type
Structural pattern

Intent
Compose objects into tree structures to represent part–whole
hierarchies.

Problem Solved
How to treat individual objects and groups of objects uniformly?

Solution
Define a common component interface

▶ Leaf objects implement base behavior;
▶ Composite objects store children and delegate operations

recursively.

Composite Pattern — key components

Component (common interface) Defines operations available to
both leaf and composite objects.

Leaf A simple object with no children.

Composite A container object that can hold components (both
leaves and other composites).

Client Interacts with components uniformly, without caring if
they’re leaves or composites.

Composite Pattern — concrete example scenario

Problem
▶ You want to represent a hierarchical file system where folders

can contain both files and other folders.
▶ Clients should treat individual files and folder groups uniformly

(e.g., calling show() on either should work).

Solution
▶ The Composite pattern allows you to build tree structures in

which both leaf nodes (files) and composite nodes (folders)
share the same interface.

Composite Pattern — concrete example scenario

Problem
▶ You want to represent a hierarchical file system where folders

can contain both files and other folders.
▶ Clients should treat individual files and folder groups uniformly

(e.g., calling show() on either should work).

Solution
▶ The Composite pattern allows you to build tree structures in

which both leaf nodes (files) and composite nodes (folders)
share the same interface.

Composite Pattern — UML class diagram

FileSystemNode

show()

FileNode
Folder

add(node)
remove(node)

children

*

Composite Pattern — concrete example code
Source file

// Component
interface FileSystemNode {

void show();
}

// Leaf
class FileNode implements FileSystemNode {

private String name;
FileNode(String name) { this.name = name; }
public void show() { System.out.println("File: " + name); }

}

// Composite
class Folder implements FileSystemNode {

private String name;
private java.util.List<FileSystemNode> children = new java.util.ArrayList<>();

Folder(String name) { this.name = name; }

public void add(FileSystemNode node) { children.add(node); }

public void show() {
System.out.println("Folder: " + name);
for (FileSystemNode child : children) child.show();

}
}

// Usage
public class Main {

public static void main(String[] args) {
Folder root = new Folder("root");
root.add(new FileNode("file1.txt"));

Folder sub = new Folder("subfolder");
sub.add(new FileNode("file2.txt"));
root.add(sub);

root.show();
}

}

#
Com-
pos-
ite
Pat-
tern
—
ben-
e-
fits
and
draw-
backs
##
Ben-
e-
fits
-
Treat
leaves
and
com-
pos-
ites
the
same
-
Sim-
pli-
fies
client
code
-
Makes
tree
struc-
tures
easy
to
build
and
ma-
nip-
u-
late
-
Sup-
ports
re-
cur-
sive
op-
era-
tions
ele-
gantly
-
En-
cour-
ages
flex-
ible,
ex-
ten-
si-
ble
sys-
tem
ar-
chi-
tec-
ture
##
Draw-
backs
-
Can
make
type
dis-
tinc-
tions
harder
when
you
do
need
to
han-
dle
leaf/com-
pos-
ite
dif-
fer-
ently
-
Risk
of
mak-
ing
Com-
pos-
ite
overly
gen-
eral
-
May
ex-
pose
child-
management
meth-
ods
even
for
leaves
(de-
pend-
ing
on
de-
sign)

https://github.com/traiansf/traiansf.github.io/blob/main/class/amss2025/curs/code/CompositePatternDemo.java

Composite Pattern Exercise

Task
▶ You are modeling hierarchical UI components:

▶ Buttons, Labels, TextFields, and Containers that hold other
components.

▶ Explain how the Composite pattern allows you to treat every UI
element uniformly (e.g., calling render() or resize()).

▶ Sketch the component interface and the composite structure.

Wrap-Up — Key Insights
Visitor Add operations to existing class hierarchies without

modifying them by externalizing behavior.

Mediator Reduce tangled, many-to-many communication by
centralizing interaction logic inside a mediator object.

Bridge Separate abstraction from implementation; avoid class
explosion and allow sides to vary independently.

Adapter Make incompatible interfaces work together: wrap one
interface to match expectations of another.

Decorator Dynamically add responsibilities or behavior to objects
without subclassing or modifying original classes.

Proxy Control/enhance access to an object (lazy loading,
security, caching) without changing the real object.

Composite Treat individual items and groups uniformly through a
shared component interface.

Wrap-up diagram
Behavioral Patterns

Visitor

Element

Mediator Colleague

«accept»

«communicates via»

Structural Patterns

Abstraction

Implementor

Target

Adapter

Adaptee

Component

Decorator

Subject

Proxy

RealSubject

Component

CompositeLeaf

«bridge»

«converts»

«wraps»

«delegates»

children

*

