
AMSS Lecture 10: Evaluating & Testing UML
Models

Traian-Florin Șerbănuță

2025



Agenda

Goal
Learn how to evaluate, validate, verify, and test UML models using
structured techniques and common tools.

General evaluation principles
▶ Why evaluate UML models?
▶ Model quality criteria
▶ Static evaluation techniques
▶ UML conformance checking

Tools
▶ Model simulation & execution tools
▶ Testing scenarios and behavioral models



General Evaluation Principles



Why Evaluate UML Models?

▶ Models are abstractions → may be ambiguous or incomplete
▶ Early detection of design problems reduces cost
▶ Ensures consistency across the system architecture
▶ Supports automated transformations and code generation



Evaluation dimensions

▶ Consistency
▶ Completeness
▶ Correctness
▶ Usability
▶ Maintainability



Evaluation dimensions: Consistency

▶ Ensures uniform use of notation, naming, and style across all
UML diagrams.

▶ Avoids contradictions between different diagram types (e.g.,
class vs. sequence diagrams).

▶ Increases clarity and coherence throughout the model.



Evaluation dimensions: Completeness

▶ All required system elements, behaviors, and interactions are
represented.

▶ No missing components that hinder system understanding.
▶ Covers all relevant viewpoints needed by stakeholders.



Evaluation dimensions: Correctness

▶ Follows UML syntax and semantic rules.
▶ Accurately reflects system requirements and domain

constraints.
▶ Contains no logical, structural, or behavioral errors.



Evaluation dimensions: Usability

▶ Diagrams are easy for stakeholders to read and interpret.
▶ Uses an appropriate level of detail—neither too abstract nor

too cluttered.
▶ Supports communication, documentation, and decision-making

processes.



Evaluation dimensions: Maintainability

▶ Diagrams can be easily updated as the system evolves.
▶ Minimizes unnecessary complexity to accommodate future

changes.
▶ Encourages modular, scalable architecture representation.



UML Model Quality Criteria

Semantic quality
▶ Are the diagrams logically correct?
▶ Do they represent valid domain concepts?

Syntactic quality
▶ Do diagrams follow the UML meta-model?
▶ Are constructs used properly?

Pragmatic quality
▶ Are diagrams understandable to stakeholders?
▶ Are they readable and not over‑complex?



Static Evaluation Techniques

▶ Checklist-based evaluation

▶ Traceability checks

▶ Cross-diagram consistency checks



Checklist-based evaluation
Useful for manual reviews.

Typical questions
▶ Do all classes have well-defined responsibilities?
▶ Are associations properly navigable?
▶ Are sequence diagrams consistent with class diagrams?

Benefits
▶ Improves model quality early, reducing rework during coding.
▶ Better communication among stakeholders.
▶ Supports teaching and training for junior modelers.
▶ Makes model reviews faster and more systematic.

Limitations
▶ Checklist quality determines quality of evaluation.

▶ may miss semantic issues if the checklist is shallow.
▶ does not replace automated validation tools

▶ e.g., UML consistency checkers



Traceability checks

Goal
ensure that every element of a UML model is properly linked to
other artifacts across the software lifecycle

▶ Requirements → Use cases → Sequence diagrams → Classes
▶ Detect missing or redundant elements



What Do You Check in UML Traceability?
Use Cases – Requirements

▶ Does every requirement link to at least one use case?
▶ Does every use case represent a valid requirement?

Use Cases – Interaction Diagrams (Sequence/Communication)
▶ Are all use case steps represented in a sequence diagram?
▶ Are alternative flows supported by alternative paths?

Interaction Diagrams – Class Diagrams
▶ Do all invoked messages map to defined class operations?
▶ Do lifelines correspond to existing classes?

Class Diagrams – State Machine Diagrams
▶ Are the state transitions consistent with class operations?
▶ Do state machines events match interaction diagrams triggers?

Design Models – Test Cases
▶ Does every use case have at least one test sequence?
▶ Are all state transitions covered by tests?



Cross-diagram consistency checks

Goal
multiple UML diagrams describing the same system do not
contradict one another

▶ Messages in sequence diagrams correspond to operations in
classes

▶ State diagram transitions match methods/events



Types of Consistency
Syntactic Consistency

▶ Ensurees diagram elements are used correctly according to
UML rules across diagrams.

▶ Example: Using the same notation for multiplicity or
stereotypes.

Semantic Consistency
▶ Ensures diagrams describe the same meaning.

▶ Example: Sequence diagram says “validateOrder()”, but no
such operation exists in the class diagram.

Behavioral Consistency
▶ Ensures system behavior is logically coherent across diagrams.

▶ Example: A state transition occurs only if an event is possible in
the sequence diagram.

Naming Consistency
▶ Names of classes, attributes, operations, events, and states

must be the same across all diagrams.
▶ Example: “CustomerAccount” vs “ClientAccount”.



Interactive Exercise

Identify 3 possible inconsistencies in the following class diagram:

TemperatureSensor

HeatingController

ControlPanel Heater

DoorSensor



Possible solution

▶ A DoorSensor doesn’t logically belong to heating
▶ TemperatureSensor - HeatingController is backwards
▶ associations are unqualified.

ControlPanel

HeatingController

Heater

TemperatureSensor

1

1..*

1

1..*

1

1

1

1



Tools for UML OCL Consistency Checking



Expressing constraints using OCL
Meeting

start: Time
end: Time
isConfirmed: Boolean = false

shift(d: Integer)

▶ invariants

context Meeting inv: end > start

▶ action triggers as pre-conditions

context Meeting::shift(d:Integer)
pre: isConfirmed = false and d>0

▶ post conditions

context Meeting::shift(d:Integer)
post: start = start@pre + d and end = end@pre + d



OCL consistency checking tools
Static analysis

▶ USE (UML-based Specification Environment)
▶ research from University of Bremen
▶ Executes OCL constraints
▶ Generates object diagrams to validate designs

Model validation inside modeling tools
▶ Papyrus (Eclipse-based, supports OCL constraints)

▶ research by various French institutions
▶ Magic Software Architect by No Magic, Inc.

▶ research from TU Dresden
▶ Enterprise Architect by Sparx Systems

Facilities
▶ Verify UML meta-model conformance
▶ Check stereotype/constraint validity
▶ Detect broken references

https://github.com/useocl/use
https://en.wikipedia.org/wiki/Papyrus_(software)
https://en.wikipedia.org/wiki/MagicDraw
https://en.wikipedia.org/wiki/Enterprise_Architect_(software)


Simulation and Execution Tools



Sequence diagram execution

▶ Animate interactions
▶ Highlight active lifelines
▶ Execute state machines

Tools
▶ IBM Rhapsody,
▶ Papyrus-RT,
▶ Cameo Simulation Toolkit

https://en.wikipedia.org/wiki/Rhapsody_(modeling)


State machine simulation

▶ Visual debugging of transitions
▶ Event injection
▶ Coverage measurement (visited states)

Tools
▶ Xholon, open source, by Primordion
▶ Magic Model Analyst
▶ partially Papyrus Moka

https://www.primordion.com/Xholon/
https://gitlab.eclipse.org/eclipse/papyrus/org.eclipse.papyrus-moka


Activity diagram execution

▶ Token-based simulation
▶ Deadlock/livelock detection

Tools
▶ Papyrus Moka
▶ Magic Model Analyst

https://gitlab.eclipse.org/eclipse/papyrus/org.eclipse.papyrus-moka


Testing Behavioral Models



Model-Based Testing (MBT)

Use the UML model as the basis for generating tests.

▶ Sequence diagrams → Interaction tests
▶ State machines → Transition coverage tests
▶ Activity diagrams → Path tests

Tools (test generation from UML models)
▶ Conformiq Designer

▶ originally a start-up based on Finland government-funded
research

▶ RTT-MBT
▶ by Verified Systems, spin-off from University of Bremen

▶ MBT suite

https://www.conformiq.com/products/conformiq-designer-automated-test-design-embedded-systems
https://www.verified.de/products/model-based-testing/
https://mbtsuite.com/


State-Based Test Example

For a DoorSensor state machine:

▶ States: Closed, Open, Alert
▶ Transitions: doorOpened, doorClosed, alarmTriggered

Test coverage:

▶ Visit all states
▶ Trigger each transition
▶ Evaluate guard conditions



Cross-Model Evaluation

▶ Every event in a state machine appears in a sequence diagram
▶ Every lifeline in a sequence diagram corresponds to a class
▶ Every operation message matches a method signature

Tools supporting this:
▶ MagicDraw/Cameo (robust cross-diagram analyzer)
▶ Enterprise Architect (dependency matrix + traceability)
▶ Papyrus (custom validation rules)



Interactive Exercise
What should happen? What can go wrong? Design test cases.

User

User

MobileApp

MobileApp

Hub

Hub

SecurityController

SecurityController

DoorSensor

DoorSensor

checkStatus()

requestDoorState()

read()

state

evaluate(state)

result

display(result)

Produce: 1. A list of possible failure points
2. A state-based test
3. A message-based consistency check



Wrap‑Up

▶ Evaluating UML models prevents early design flaws
▶ Tools support: syntax checking, semantic validation, simulation
▶ Model-Based Testing connects behavioral diagrams with

executable tests


	General Evaluation Principles
	Tools for UML OCL Consistency Checking
	Simulation and Execution Tools
	Testing Behavioral Models

