AMSS Lecture 10: Evaluating & Testing UML
Models

Traian-Florin Serbanuta

2025

Agenda

Goal
Learn how to evaluate, validate, verify, and test UML models using
structured techniques and common tools.

General evaluation principles

» Why evaluate UML models?
P Model quality criteria

P> Static evaluation techniques
P UML conformance checking

Tools
P Model simulation & execution tools
P> Testing scenarios and behavioral models

General Evaluation Principles

Why Evaluate UML Models?

P Models are abstractions — may be ambiguous or incomplete
P Early detection of design problems reduces cost

P> Ensures consistency across the system architecture

P Supports automated transformations and code generation

Evaluation dimensions

P Consistency
P Completeness
P Correctness

P Usability

P Maintainability

Evaluation dimensions: Consistency

P Ensures uniform use of notation, naming, and style across all
UML diagrams.

P Avoids contradictions between different diagram types (e.g.,
class vs. sequence diagrams).

P> Increases clarity and coherence throughout the model.

Evaluation dimensions: Completeness

P All required system elements, behaviors, and interactions are
represented.

P No missing components that hinder system understanding.
P> Covers all relevant viewpoints needed by stakeholders.

Evaluation dimensions: Correctness

P Follows UML syntax and semantic rules.

P Accurately reflects system requirements and domain
constraints.

P Contains no logical, structural, or behavioral errors.

Evaluation dimensions: Usability

P> Diagrams are easy for stakeholders to read and interpret.
P> Uses an appropriate level of detail—neither too abstract nor

too cluttered.
P Supports communication, documentation, and decision-making

processes.

Evaluation dimensions: Maintainability

P Diagrams can be easily updated as the system evolves.

P Minimizes unnecessary complexity to accommodate future
changes.

P Encourages modular, scalable architecture representation.

UML Model Quality Criteria

Semantic quality

P Are the diagrams logically correct?
P Do they represent valid domain concepts?

Syntactic quality
P Do diagrams follow the UML meta-model?
P Are constructs used properly?

Pragmatic quality
P Are diagrams understandable to stakeholders?
P> Are they readable and not over-complex?

Static Evaluation Techniques

P Checklist-based evaluation
P Traceability checks

P Cross-diagram consistency checks

Checklist-based evaluation
Useful for manual reviews.

Typical questions

P Do all classes have well-defined responsibilities?
P> Are associations properly navigable?
P> Are sequence diagrams consistent with class diagrams?

Benefits
P Improves model quality early, reducing rework during coding.
P> Better communication among stakeholders.
P Supports teaching and training for junior modelers.
P Makes model reviews faster and more systematic.

Limitations
P Checklist quality determines quality of evaluation.
P> may miss semantic issues if the checklist is shallow.
P does not replace automated validation tools
P e.g., UML consistency checkers

Traceability checks

Goal
ensure that every element of a UML model is properly linked to
other artifacts across the software lifecycle
P Requirements — Use cases — Sequence diagrams — Classes
P Detect missing or redundant elements

What Do You Check in UML Traceability?

Use Cases — Requirements

P Does every requirement link to at least one use case?
P Does every use case represent a valid requirement?

Use Cases — Interaction Diagrams (Sequence/Communication)

P> Are all use case steps represented in a sequence diagram?
P> Are alternative flows supported by alternative paths?

Interaction Diagrams — Class Diagrams

P Do all invoked messages map to defined class operations?
P Do lifelines correspond to existing classes?

Class Diagrams — State Machine Diagrams

P> Are the state transitions consistent with class operations?
P Do state machines events match interaction diagrams triggers?

Design Models — Test Cases

P> Does every use case have at least one test sequence?
P> Are all state transitions covered by tests?

Cross-diagram consistency checks

Goal
multiple UML diagrams describing the same system do not
contradict one another
P Messages in sequence diagrams correspond to operations in
classes
P> State diagram transitions match methods/events

Types of Consistency
Syntactic Consistency
P Ensurees diagram elements are used correctly according to

UML rules across diagrams.
P Example: Using the same notation for multiplicity or
stereotypes.

Semantic Consistency

P Ensures diagrams describe the same meaning.
P Example: Sequence diagram says “validateOrder()", but no
such operation exists in the class diagram.

Behavioral Consistency

P Ensures system behavior is logically coherent across diagrams.
P> Example: A state transition occurs only if an event is possible in
the sequence diagram.

Naming Consistency

P Names of classes, attributes, operations, events, and states

must be the same across all diagrams.
P Examble: “CustomerAcconnt” ve “ClientAcconnt’

Interactive Exercise

Identify 3 possible inconsistencies in the following class diagram:

HeatingController DoorSensor

ControlPanel

TemperatureSensor

Possible solution

P A DoorSensor doesn't logically belong to heating
P TemperatureSensor - HeatingController is backwards
P> associations are unqualified.

HeatingController

ControlPanel Heater

1

TemperatureSensor

Tools for UML OCL Consistency Checking

Expressing constraints using OCL

@ Meeting

start: Time
end: Time
isConfirmed: Boolean = false

shift(d: Integer)

P invariants
context Meeting inv: end > start
P> action triggers as pre-conditions

context Meeting::shift(d:Integer)
pre: isConfirmed = false and d>0

P post conditions

context Meeting::shift(d:Integer)
post: start = start@pre + d and end = end@pre + d

OCL consistency checking tools

Static analysis
P USE (UML-based Specification Environment)

P> research from University of Bremen
P Executes OCL constraints
P> Generates object diagrams to validate designs

Model validation inside modeling tools
P Papyrus (Eclipse-based, supports OCL constraints)
P> research by various French institutions

P Magic Software Architect by No Magic, Inc.
P research from TU Dresden

P Enterprise Architect by Sparx Systems

Facilities
P Verify UML meta-model conformance
P> Check stereotype/constraint validity
P Detect broken references

https://github.com/useocl/use
https://en.wikipedia.org/wiki/Papyrus_(software)
https://en.wikipedia.org/wiki/MagicDraw
https://en.wikipedia.org/wiki/Enterprise_Architect_(software)

Simulation and Execution Tools

Sequence diagram execution

P Animate interactions
P Highlight active lifelines
P Execute state machines

Tools
» IBM Rhapsody,
» Papyrus-RT,
P Cameo Simulation Toolkit

https://en.wikipedia.org/wiki/Rhapsody_(modeling)

State machine simulation

P Visual debugging of transitions
P Event injection
P Coverage measurement (visited states)

Tools
P Xholon, open source, by Primordion
P Magic Model Analyst
P partially Papyrus Moka

https://www.primordion.com/Xholon/
https://gitlab.eclipse.org/eclipse/papyrus/org.eclipse.papyrus-moka

Activity diagram execution

P Token-based simulation
P Deadlock/livelock detection

Tools
P Papyrus Moka
P Magic Model Analyst

https://gitlab.eclipse.org/eclipse/papyrus/org.eclipse.papyrus-moka

Testing Behavioral Models

Model-Based Testing (MBT)

Use the UML model as the basis for generating tests.

P Sequence diagrams — Interaction tests
P State machines — Transition coverage tests
P Activity diagrams — Path tests

Tools (test generation from UML models)

P Conformiq Designer
P originally a start-up based on Finland government-funded
research
» RTT-MBT
P> by Verified Systems, spin-off from University of Bremen
» MBT suite

https://www.conformiq.com/products/conformiq-designer-automated-test-design-embedded-systems
https://www.verified.de/products/model-based-testing/
https://mbtsuite.com/

State-Based Test Example

For a DoorSensor state machine:

P States: Closed, Open, Alert
P> Transitions: doorOpened, doorClosed, alarmTriggered

Test coverage:

P Visit all states
P Trigger each transition
P Evaluate guard conditions

Cross-Model Evaluation

P> Every event in a state machine appears in a sequence diagram
P Every lifeline in a sequence diagram corresponds to a class
P> Every operation message matches a method signature

Tools supporting this:

P MagicDraw/Cameo (robust cross-diagram analyzer)
P Enterprise Architect (dependency matrix + traceability)
P Papyrus (custom validation rules)

Interactive Exercise

What should happen? What can go wrong? Design test cases.

MobileApp

User
1

1 1
' checkStatus() !
—_— 3

User MobileApp

1

1

|

1

requestDoorState() |
'I

1

1

1

1

Hub SecurityController DoorSensor
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
read() X o
] I
| state X X
[SRR [T 1
| evaluate(state) | |
1 1 :
1 result i |
[SEEEEEEEr e e e CEL Y 1 1
1 1 1
1 1 1
..... d 1 1
1 1 1
Hub SecurityController DoorSensor

Wrap-Up

P Evaluating UML models prevents early design flaws

P Tools support: syntax checking, semantic validation, simulation

P Model-Based Testing connects behavioral diagrams with
executable tests

	General Evaluation Principles
	Tools for UML OCL Consistency Checking
	Simulation and Execution Tools
	Testing Behavioral Models

