AMSS Lecture 9: The UML Meta-Model & Profile Diagrams

Traian-Florin Şerbănuță

2025

Agenda

Goals

- Understand the ideas behind the UML meta-model
- Using Profile Diagrams to customize UML for a domain

The UML Meta-Model

- UML Meta-Model Basics
- Meta-Model Architecture (MOF layers)
- How UML Constructs Are Defined

Profile Diagrams

Profiles as Meta-Model Customizations

The UML Meta-Model

1. What Is a Meta-Model?

- A model represents a real-world system.
- A meta-model defines the rules for building models.
- ► UML itself is not just a set of diagrams it is a **modeling** language defined by a meta-model.

Key idea

The UML meta-model defines:

- What a Class, Attribute, Operation, Association are
- ► How they relate
- What diagrams can contain

Model-Driven Architecture (MDA)

MDA is a software development approach defined by the Object Management Group (OMG)

- Focuses on creating and transforming models rather than writing code directly
- ▶ Separates business logic from platform-specific implementation
- Supports automation:

 $\mathsf{models} \to \mathsf{transformations} \to \mathsf{generated} \ \mathsf{code}$

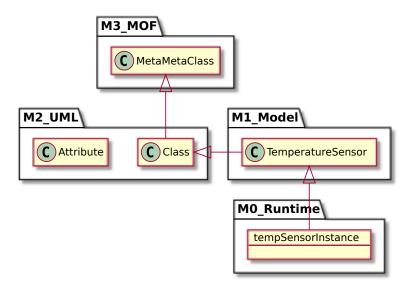
Key MDA Model Types

CIM Computation-Independent Model (business/domain understanding)

PIM Platform-Independent Model (logic without tech details)

PSM Platform-Specific Model (technology-bound design)

Examples of MDA Languages / Modeling Standards


```
UML Unified Modeling Language
     (primary MDA modeling language)
MOF Meta-Object Facility
     (meta-modeling framework)
QVT Query/View/Transformation
     (model transformation language)
OCL Object Constraint Language
     (add constraints to models)
XMI XML Metadata Interchange
     (model serialization/exchange format)
```

2. The Meta-Object Facility (MOF) Architecture

UML is defined using a 4-layer meta-model architecture:

Layer	Meaning	Example
M3 M2	Meta-meta-model Meta-model	MOF defining UML's structure UML specification (classes, states, components)
M1	Model	Your diagrams (class diagrams, state diagrams)
M0	Runtime	Real objects in the running system

Visualization of the 4-layered MOF architecture for UML

Meta-Object Facility (MOF) in More Detail

- ▶ MOF is an Object Management Group (OMG) standard
- Defines how meta-models are built
- UML, SysML, BPMN meta-models are all built using MOF
- Enables interoperability between modeling tools

Key MOF Concepts

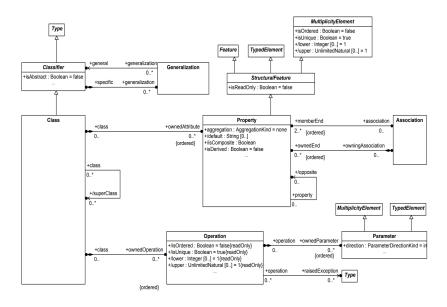
Classes Meta-classes used to define modeling concepts (e.g., UML Class)

Properties Define attributes and relationships in the meta-model

Packages Group meta-model elements

Associations Link meta-classes together

MOF Variants


Essential MOF (EMOF)

- A simplified subset of MOF
- Used for simple DSLs, transformation systems
 - Many DSLs (Domain-Specific Languages) use EMOF for simplicity

Complete MOF (CMOF)

- Offers the full expressive power of MOF
 - A particular aspect of CMOF is its Reflection layer
 - UML is defined in CMOF

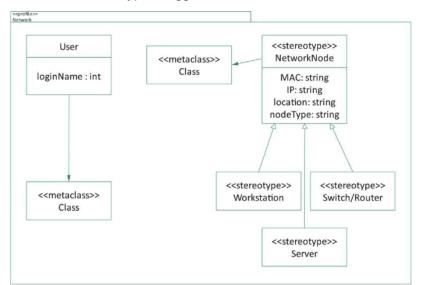
Essential MOF (EMOF) classes

Profiles and Profile diagrams

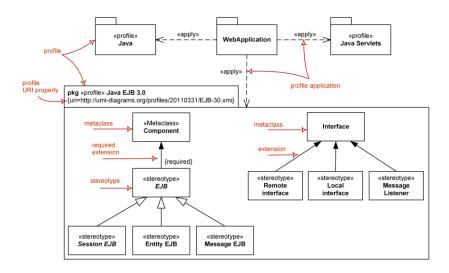
4. Profiles and Stereotypes (10 minutes)

Profiles are **lightweight extensions** to the UML meta-model

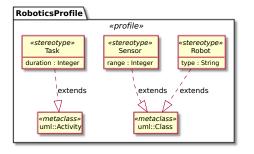
- Add domain-specific concepts
- Add constraints
- Specialize existing UML meta-model elements
 - without modifying UML itself

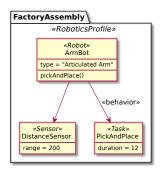

Stereotypes extend UML elements

- Add tagged values
- Add constraints
- Add semantics


5. Profile Diagrams

Define UML extensions for domain-specific modeling.


custom stereotypes, tagged values, and constraints.



5. Profile Diagram example

A profile diagram and a DSL model using it

Why Profiles instead of modifying the UML meta-model?

- Profiles keep UML standard-compliant
- ► Tool-friendly
- ▶ Tailored for specific domains (IoT, automotive, medical, cloud, finance)

Examples:

- ► SysML = UML Profile
- MARTE (real-time systems) = UML Profile

Interactive exercise (Secure Web Services profile)

Create a UML Profile Diagram that extends UML to better describe security characteristics of web-service components.

Tasks

- 1. Create a WebSecurity profile
- 2. Add stereotypes
 - SecureComponent extends Component with encryption and CA tags
 - b. SensitiveData extends Class with a dataCategory tag
 - c. AuthRequired extends Operation with authLevel tag
- 3. Add at least one constraint
 - e.g., SensitiveData must have at least one private attribute

Summary

- ► UML is defined by a **meta-model** (M2 layer) using MOF (M3 layer)
- ➤ Your diagrams are **models** (M1), representing real objects (M0)
- ▶ Profiles customize UML without altering the meta-model
- Stereotypes add domain semantics and constraints
- Profiles are essential for domain-specific modeling (e.g., SysML)