
AMSS Lecture 3: Requirements Analysis
UML Use Case / Sequence Diagrams

Traian-Florin Șerbănuță

2025

Agenda

1. What are requirements?

2. Scenarios and use cases

3. UML Use Case Diagrams

4. Interactive Exercise 1: Identify actors and use cases

5. UML Sequence Diagrams

6. Interactive Exercise 2: Model an interaction

7. Wrap-up and discussion

What Are Requirements?
▶ Definition: Descriptions of what the system must do and

under what constraints.
▶ Purpose: Ensure all stakeholders share a common

understanding of the system.
▶ Main types:

▶ Functional requirements: what the system should do
▶ Non-functional requirements: how the system should be
▶ Domain requirements: external or business rules

Examples:

A course management system should:

functional
allow registered students to submit assignments online

non-functional
be able to accomodate up to 50k students

domain
comply with GDPR regulations

Why Requirements Matter

▶ Guide design and development
▶ Prevent misunderstandings between stakeholders
▶ Support validation and testing
▶ Serve as the basis for modeling and documentation

Without good requirements: models and implementations diverge
from real needs.

Example (negative): Denver Airport Baggage System
Goal: Fully automated baggage handling system for all airlines
What Went Wrong:

▶ Unclear & Changing Requirements:
Frequent scope changes, especially from airlines

▶ Stakeholder Misalignment:
Conflicting airline needs not reconciled

▶ Overly Ambitious Design:
Unrealistic automation goals

▶ Poor Communication:
Incomplete and inconsistent requirement documentation

Impact:
▶ 16-month delay
▶ $560M cost overrun
▶ System never operational

Key Lesson:
Clear, stable, and agreed-upon requirements are essential
for complex system success.

From Requirements to Scenarios

▶ Scenarios = stories about how users interact with the system
▶ Each scenario focuses on one goal or task
▶ Scenarios help identify actors and use cases

Example Scenario:
A student logs into the portal, views enrolled courses, and
submits a project file.

Use Cases

▶ A use case is a description of a system’s behavior as it
responds to a request from an actor.

▶ Actors: users or systems interacting with ours
▶ System boundary: separates internal from external elements

Notation: ovals (use cases), stick figures (actors), box (system
boundary)

Example

Relationships Between Use Cases

▶ Include: mandatory reusable functionality
▶ Extend: optional or conditional behavior
▶ Generalization: specialization of an actor or use case

Example
▶ Login includes Register
▶ Generate Reports extends Manage Course Offering

Interactive Exercise 1: Identify Actors and Use Cases

Scenario: A university online examination system.
Students can register for exams, view schedules, and submit answers
online. Professors can create exams, publish grades, and review
submissions. The system authenticates all users.

Tasks
1. Identify at least 3 actors.
2. Define 5–7 use cases.
3. Sketch a use case diagram.

UML Sequence Diagrams

Visualize the sequence of interactions that fulfill a use case.

▶ Describe how objects interact to perform a use case
▶ Focus on message order and lifelines over time

Elements
▶ Actor / object lifelines
▶ Messages (synchronous, asynchronous, return)
▶ Activation bars (execution time)

Example Sequence Diagram
Scenario: “User logs into the system”

Actors and objects:
▶ User
▶ LoginPage
▶ AuthService
▶ Database

Steps
1. User enters credentials into a LoginInterface
2. The LoginPage send verify credentials message to an

AuthenticationService
3. The AuthService sends check credentials to a Database
4. The Database returns result
5. The AuthService responds with success
6. The Login Interface replies with success message

5a. The AuthService responds with error: Authentication Failed.
The Login Interface replies with success message

Example

Figure 1: Sequence diagram for user login

Interactive Exercise 2: Model an Interaction

Scenario: “Customer places an order in an online shop.”

Actors and objects
▶ Customer
▶ WebApp
▶ OrderService
▶ PaymentGateway
▶ Database

Tasks
1. Identify the main sequence of messages.
2. Draw a sequence diagram (lifelines, messages, returns).
3. Include one alternative path (e.g., payment failure).

Wrap-Up

Key Takeaways
▶ Requirements describe what the system must do.
▶ Scenarios make requirements concrete.
▶ Use case diagrams capture system functionality and boundaries.
▶ Sequence diagrams model detailed interactions.

Next Lecture
Some design patterns

