Analiza si Modelarea Sistemelor Software -
Lecture 2: UML Class Diagrams

Traian-Florin Serbanuta

2025

Agenda

LNk~ wWNh =

Quick recap

What are class diagrams?

Core elements of class diagrams

Associations, multiplicity & composition

Advanced concepts (generalization, interfaces, dependencies)
Interactive exercise 1: Identify model elements

Design heuristics and good practices

Interactive exercise 2: Build a small class model

Wrap-up & next steps

Recap from Last Class

P Why modeling is crucial
P How abstraction helps communication
P> First exposure to diagrams (morning routine exercise)

Today: move from informal to formal models.

What is a Class Diagram?

P Purpose: describes the static structure of a system
P Main elements: classes, attributes, operations, relationships
P Used for:

P Domain modeling

P Design-level documentation

P Communication between stakeholders

Sample class diagram

Order

dateReceived: Date[0..1]

multiplicity

Customer
isPrepaid: Boolean[1] * name [1]
number: String [1] | address [0..1]
price: Money &
. g tCreditRating(): Strin
dispatch assoclation % - 9
close »
T R
1 \ constraint R
\ generalization clase
\ ¥
{if Order.customer.getCreditRating is
"poor" then Order.isPrepaid must be
true}
role name
: | Ci Ci
attributes
. creditC:
Y A creditRating
* perat creditLimit
Order Line A/ billForMonth(Integer)
remind()
quantity: Integer I -
price: Money * {getCreditRating() == "poor"}
* salesRep
navigable
1 Employee
Product

Figure 1:

Order processing

Core Elements

Concept Description Example
Class Blueprint for objects Book, Student
Attribute Property of a class title: String,
age: Integer
Operation Behavior of a class borrowBook (),
calculateFine()
Visibility Access modifier + public
- private
protected
~ package

Attribute ::= visibility name: type multiplicity = default {props}

Operation ::= visibility name(parameter-list): return-type {props}

Parameter ::= direction name: type = default_value

Associations

P> Represent relationships between classes

P Can have:
P Roles: names describing relationship ends
P Multiplicity: number of instances
P Navigability: direction of the relationship

Properties vs Associations:

0.1 * + isPrepaid
Order Date Order Boolean
+ dateReceived 1
B 1
+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1] Sosiee
+ lineltems: OrderLine [*] {ordered} target
lineltems
* | {ordered}

Figure 2: Properties OrderLine

Figure 3: Associations

Bidirectional Associations

P> Pair of properties which are linked together as inverses

owner
Person Car

0.1 *

Figure 4: A bidirectional association

If | start with a car, take its owner, then take the cars property of
the owner, then | should find the original car among those cars.

Owns P

Person Car
0.1 *

Figure 5: Another way to show a bidirectional association

Aggregation vs Composition

P Aggregation (): “has-a” relationship, but parts can exist
independently

Department 2| Professor

1 0.

P Composition (¢): “owns-a” relationship, parts die with the
whole

m Engine

Generalization and Interfaces

P Generalization: inheritance between classes

T

|Student || |Professor l‘

P Implementation of an interface

Borrowable

+borrow()
FN
/ \

/ \

Book DVD

+borrow() +borrow()

Dependencies

P A dependency exists between two elements if
P> changes to the definition of one element (the supplier or target)
P may cause changes to the other (the client or source).

P Indicated with a dashed arrow

LibraryServicef- — — —>»EmailNotifier

Example — Interfaces and abstract classes in Java

«nterface»
Collection
Intertace
squals
add
abstract
clase
Abstract List

«interface»

Order List
————————————— equals
Line Htems ['] get
ot
< add

Implementation

abstract

dependency
(requires. (provides method
Interface) Interface)
ArrayList
get
add
overriding

Figure 6: Interfaces and abstract classes in Java — expanded view

Order List

(oS >0— ArrayList

Collection A)

Figure 7: Interfaces and abstract classes in Java — ball-and-socket view

Line ltems [*]

Interactive Exercise 1: Spot the Elements

Class: Library

- name: String

- books: List<Book>

+ addBook(b: Book)
findBook(title: String): Book

+

Class: Book

- title: String
- author: String
+ borrow()

+ return()

Task (5 minutes): Identify classes, attributes, operations, and their
relationships.

Design Heuristics & Good Practices

P Favor composition over inheritance

P Keep diagrams readable (<20 classes per diagram)
P> Use consistent naming conventions

P Model only what's necessary

P Document assumptions and constraints

Example — over-complicated diagram

Order

-orderid: UUID
-orderDate: DateTime
-status: OrderStatus

~totalAmount: Money

+calculateTotal(): Money
+applyDiscount(dc: DiscountCode): void
+cancel(): void

+addItem(item: Orderltem): void
+removeltem(itemld: UUID): void

+validate(): ValidationResult N
® RS
0.1 SN
1 So
Orderltem Discountcode Customer Ta

- -code: String ValidationResult

-itemld: UUID N " -customerld: UUID

-unitPrice: Money pisrcentagsifions “name: String Jisvalid: boolean

-quantity: int _validUntil: Date -email: String 3

+getLineTotal(): Money +1ovalidinow: Date); boolean +changeShippingAddress(addr: Address): void

*
billing[shipping
Product
Address

-productltd:_ uuID —
-name: String -street: String
~description: String ~city: String
-basePrice: Money -postalCode: String
-taxCategory: TaxCategory -country: String
+getPriceWithTax(): Money

Example — Simplified (conceptual) diagram

orderDate
status

0.1

DiscountCode I Customerl

code name
percentage email

Orderltem

quantity

S
*

Product

name
price

Interactive Exercise 2: Build a Class Diagram

Scenario: Online food delivery system.

P Entities: Customer, Restaurant, Order, Menultem,
DeliveryDriver
P> Operations: place order, assign driver, calculate total

Task (15 minutes):

P Form small groups
P> Sketch a class diagram
P> Show associations, multiplicities, and at least one inheritance

relationship

Then: Present and discuss different design choices.

Wrap-Up

Today’s takeaways:

P Class diagrams model the structure of systems

P> Associations and multiplicities matter

P Composition, inheritance, and dependencies define relationships
P Modeling requires balance: detail vs. clarity

Next class: requirements analysis

