
Analiza și Modelarea Sistemelor Software -
Lecture 2: UML Class Diagrams

Traian-Florin Șerbănuță

2025

Agenda

1. Quick recap
2. What are class diagrams?
3. Core elements of class diagrams
4. Associations, multiplicity & composition
5. Advanced concepts (generalization, interfaces, dependencies)
6. Interactive exercise 1: Identify model elements
7. Design heuristics and good practices
8. Interactive exercise 2: Build a small class model
9. Wrap-up & next steps

Recap from Last Class

▶ Why modeling is crucial
▶ How abstraction helps communication
▶ First exposure to diagrams (morning routine exercise)

Today: move from informal to formal models.

What is a Class Diagram?

▶ Purpose: describes the static structure of a system
▶ Main elements: classes, attributes, operations, relationships
▶ Used for:

▶ Domain modeling
▶ Design-level documentation
▶ Communication between stakeholders

Sample class diagram

Figure 1: Order processing

Core Elements

Concept Description Example

Class Blueprint for objects Book, Student
Attribute Property of a class title: String,

age: Integer
Operation Behavior of a class borrowBook(),

calculateFine()
Visibility Access modifier + public

- private
protected
~ package

Attribute ::= visibility name: type multiplicity = default {props}

Operation ::= visibility name(parameter-list): return-type {props}

Parameter ::= direction name: type = default_value

Associations

▶ Represent relationships between classes
▶ Can have:

▶ Roles: names describing relationship ends
▶ Multiplicity: number of instances
▶ Navigability: direction of the relationship

Properties vs Associations:

Figure 2: Properties

Figure 3: Associations

Bidirectional Associations

▶ Pair of properties which are linked together as inverses

Figure 4: A bidirectional association

If I start with a car, take its owner, then take the cars property of
the owner, then I should find the original car among those cars.

Figure 5: Another way to show a bidirectional association

Aggregation vs Composition

▶ Aggregation (♦): “has-a” relationship, but parts can exist
independently

Department Professor
1 0..*

▶ Composition (�): “owns-a” relationship, parts die with the
whole

Car Engine

Generalization and Interfaces

▶ Generalization: inheritance between classes

User

Student Professor

▶ Implementation of an interface

Borrowable

+borrow()

Book

+borrow()

DVD

+borrow()

Dependencies

▶ A dependency exists between two elements if
▶ changes to the definition of one element (the supplier or target)
▶ may cause changes to the other (the client or source).

▶ Indicated with a dashed arrow

LibraryService EmailNotifier

Example – Interfaces and abstract classes in Java

Figure 6: Interfaces and abstract classes in Java – expanded view

Figure 7: Interfaces and abstract classes in Java – ball-and-socket view

Interactive Exercise 1: Spot the Elements

Class: Library
- name: String
- books: List<Book>
+ addBook(b: Book)
+ findBook(title: String): Book

Class: Book
- title: String
- author: String
+ borrow()
+ return()

Task (5 minutes): Identify classes, attributes, operations, and their
relationships.

Design Heuristics & Good Practices

▶ Favor composition over inheritance
▶ Keep diagrams readable (<20 classes per diagram)
▶ Use consistent naming conventions
▶ Model only what’s necessary
▶ Document assumptions and constraints

Example – over-complicated diagram

Order

-orderId: UUID
-orderDate: DateTime
-status: OrderStatus
-totalAmount: Money

+calculateTotal(): Money
+applyDiscount(dc: DiscountCode): void
+cancel(): void
+addItem(item: OrderItem): void
+removeItem(itemId: UUID): void
+validate(): ValidationResult

OrderItem

-itemId: UUID
-unitPrice: Money
-quantity: int

+getLineTotal(): Money

Product

-productId: UUID
-name: String
-description: String
-basePrice: Money
-taxCategory: TaxCategory

+getPriceWithTax(): Money

DiscountCode

-code: String
-percentage: float
-validFrom: Date
-validUntil: Date

+isValid(now: Date): boolean

Customer

-customerId: UUID
-name: String
-email: String

+changeShippingAddress(addr: Address): void

Address

-street: String
-city: String
-postalCode: String
-country: String

ValidationResult

-isValid: boolean
-errors: List<String>

1..*

*

0..1

*

billing shipping

Example – Simplified (conceptual) diagram

Order

orderDate
status

OrderItem

quantity

Product

name
price

DiscountCode

code
percentage

Customer

name
email

1..*

*

0..1

*

Interactive Exercise 2: Build a Class Diagram

Scenario: Online food delivery system.

▶ Entities: Customer, Restaurant, Order, MenuItem,
DeliveryDriver

▶ Operations: place order, assign driver, calculate total

Task (15 minutes):

▶ Form small groups
▶ Sketch a class diagram
▶ Show associations, multiplicities, and at least one inheritance

relationship

Then: Present and discuss different design choices.

Wrap-Up

Today’s takeaways:

▶ Class diagrams model the structure of systems
▶ Associations and multiplicities matter
▶ Composition, inheritance, and dependencies define relationships
▶ Modeling requires balance: detail vs. clarity

Next class: requirements analysis

